
Copyright © 2025 Optimalon Software Ltd. 1

Cutting Optimization Library CutGLib.

Copyright © 2025 Optimalon Software Ltd. All rights reserved.

http://www.optimalon.com

1. General Information. ... 1

2. Library Interface. .. 3

Input Properties: .. 3

Result Properties: .. 6

Setup Methods: ... 7

Linear (1D) methods: ... 7

Rectangular (2D) methods:.. 11

Calculation Methods: ... 12

Linear (1D) method: ... 12

Rectangular (2D) method: ... 12

Result Methods: .. 13

Linear (1D) methods: ... 14

Rectangular (2D) methods:.. 17

Getting cuts .. 18

Export results to file ... 19

3. Example of the Library Usage. (C# syntax) ... 22

3.1. Cut one linear stock. ... 22

3.2. Cut multiple size linear stocks. ... 23

3.3. Cut one size stock. ... 24

3.4. Cut multiple size stocks. ... 25

1. General Information.

CutGLib is a software library to perform the cutting optimization for rectangular (2D) and linear (1D) parts.

Having a list of rectangular parts CutGLib finds how to cut them from rectangular stocks with minimal material
waste.

The library not only finds the parts placement but also generates the cutting instructions that can be easily
translated for the CNC controllers.

The main features of CutGLib are:

• Cutting complexity levels from 2 (simple XY cuts) to 6.
• Horizontal, Vertical and Automatic cutting directions.
• Minimization stock panels rotation.
• Multiple sizes of the stocks.
• Minimization of the cutting layouts (woodworking feature).
• Non-zero saw thickness / kerf, part-to-part gaps.
• Generates list of remaining parts for guillotine cutting.
• Preserve part / grain orientation.
• Rotation of parts by 90 degrees for better optimization.
• Incomplete optimization for limited number of stocks.
• Unlimited parts and stocks quantities.
• Simple programming interface.
• Support various operating systems and platform.

Copyright © 2025 Optimalon Software Ltd. 2

The typical workflow is:

• Create the instance of the calculation class.
• Specify stock parameters (AddStock / AddLinearStock).
• Specify list of rectangular parts to cut (AddPart / AddLinearPart).
• Specify the saw thickness / kerf if applicable.
• Run the optimization process using 1D or 2D calculation methods.
• Get the coordinates of the parts or/and cutting instructions.

The optimization engine performs two major steps of the calculations:
• Parts placement . All specified parts get moved and turned in different ways to find such layout that

occupies as less space as possible. Also the cutting instructions are generated during this step.
• Quality control . The quality control module performs several post-processing checks to assure the

solution is valid and accurate. It checks if there are any intersections between the parts, cutting planes and
the parts and checks if the list of cutting planes is complete for all parts.

If the engine encounters any problems during the calculation then it returns the error message.

The library is written on C# for .Net Framework. It can be used for the desktop computers (Windows 2000, XP,
Vista, 7 and later), CNC machines (Windows CE 4.x and higher) and even for handheld devices such as Pocket
PCs and Smartphones (Windows Mobile 2003 and higher).
The library can be easily integrated into .Net development tools (Visual Studio .Net) as well into traditional Win32
tools such as Ms Visual Basic, Borland Delphi and Ms Visual C++.

Numerical Precision
CutGLib supports values with up to 7 digits of the precision for all objects. It means all part sizes, stock sizes, saw
kerf and other numeric values specified by the user of the library should fit into 7-digits range.
Let’s consider some examples. Please note: the red digits don’t fit into 7-digits range and will be removed (rounded
up).

Example 1: If a stock length is 2500.0 (4 digits before the decimal separator) then the saw kerf can only be
specified with up to 3-rd digits after the decimal separator (0.001). Saw kerf specified as 0.0125 will be rounded up
to 0.013.

Example 2: A stock length of 150.0 and part width of 2.1078 fits into 7-digits range. However, a part width of
1.031235 will not fit and will be rounded up to 1.0312.

Decimal Point

Property MaxDecimalPoint defines the maximum count of digits you can have after the decimal separator. By
default it is 3, but the user can change it from 0 to 7. It plays an important role to allow you specify numbers with
higher precisions.

Example:
Calculator.AddStock(52, 42, 1);
Calculator.AddPart(6.0125, 25.5625, 2);

With default precision of 3 your parts will be rounded to 6.013 and 25.563. If your project specifies
MaxDecimalPoint = 4 then the parts dimensions will be preserved as 6.0125 and 25.5625.

Copyright © 2025 Optimalon Software Ltd. 3

2. Library Interface.

All indices are zero-based in the library. Indices are 0..N-1 for N objects.
The library provides its functionality via one interface class CutGLib.CutEngine with the following public members:

Input Properties:

bool CompleteMode;
Indicates that all of the parts have to be placed to accept the calculation was successful. If only some of the parts
are required to be placed then set CompleteMode to false .
This property plays important role when the stock size is less than size of the parts to be cut from the stock.

double SawWidth;
Defines the saw thickness / kerf size / part to part gap. This value will be taken in account during the calculation.

double TrimLeft;
Defines the size of unused (trim) size on the left side of the stock.

double TrimTop;
Defines the size of unused (trim) size on the topside of the stock.

double TrimRight;
Defines the size of unused (trim) size on the right side of the stock.

double TrimBottom;
Defines the size of unused (trim) size on the bottom side of the stock.

bool UseLayoutMinimization;
If this property is TRUE then the calculation engine tries to minimize the number of different cutting layouts. This is
a very important for wood cutting when the operator can load several stocks into the cutting machine and process
them at once. If this property is FALSE (default) then the engine tries to minimize the number of stocks.

int MaxLayoutSize;
Defines the maximum number of stocks that can be cut at once from one layout. Works only if
UseLayoutMinimization is true .

double WasteSizeMin;
Minimal acceptable size of the waste parts (0 - no restrictions). It plays an important role when cut glass stocks –
because it’s impossible to cut tiny pieces of glass.

String Version ;
Version of the library.

Copyright © 2025 Optimalon Software Ltd. 4

bool MinimizeSheetRotation;
It produces cutting layouts that require less stock panel rotations during the cutting operations. Therefore it
minimizes the physical efforts and preparation time during loading/unloading stage of the cutting jobs.
However, it may produce more waste parts and increase the total cutting lengths.

MinimizeSheetRotation = false

MinimizeSheetRotation = true

Copyright © 2025 Optimalon Software Ltd. 5

int MaxCutLevel;
Defines how complex the result layout will be. It goes from 2 to 6. Level 2 allows only two cutting planes (so-called
X/Y cuts) and it produces the result with the most material waste. However, this level is the simplest one to cut by
hand.

Example MaxCutLevel Description

2

Level 1 cuts split the stock panel by making cuts
across the stock from one side to another.

Level 2 cuts produce actual parts by slicing the
stripes from the level 1 cuts.

3

In addition to 1 and 2 levels the cuts on the level
3 produces the actual parts by making cuts of
level 2 results.

4

In addition to 1..3 levels the 4th level can cut the
parts from the level 3 leftovers.

5

Levels 5 cuts the leftovers from the level 4 cuts
and therefore produces more complicated layout
with the less waste.

6

Level 6 produces the most complex and the
most optimized layouts. It’s a default level for
CutGLib library.

Copyright © 2025 Optimalon Software Ltd. 6

Result Properties:

int StockCount;
Read-only property defines the total number of stocks specified in the cutting project.

int UsedStockCount;
Read-only property defines number of stocks that were used to cut all parts.

int LinearStockCount;
Read-only property defines the total number of linear stocks specified in the cutting project.

int UsedLinearStockCount;
Read-only property defines number of linear stocks that were used to cut all parts.

int RemainingPartCount;
Read-only property that defines number of remaining parts left after all cuts have been done. If the value is 0 then
all parts have been used.

int PartCount;
Read-only property defines total number of parts specified in the cutting project.

int PlacedPartCount;
Specifies the number of parts have been processed and placed. It has the same value as PartCount in the most
cases, but if CompleteMode is FALSE then PlacedPartCount can be less than PartCount indicating the fact that
not of the parts have been placed.

int LayoutCount;
Read-only property defines number of different layouts / patterns of the cutting optimization.

double ElapsedTime;
Read-only property defines elapsed time in seconds spent for the calculation.

Copyright © 2025 Optimalon Software Ltd. 7

Setup Methods:

void Clear()
Clears all parts and settings from the calculator. This method is usually invoked to prepare another calculation.

Linear (1D) methods:
bool AddLinearStock (double ALength, int aCount, string aID)
Creates aCount new linear stocks with the specified length and text ID. After the optimization is done the list of
used and un-used stocks gets created.

bool AddLinearStock (double ALength, int aCount, string aID, bool aWaste)
Similar to previous method, but has extra parameter aWaste , that defines if the stock is a waste / leftover from
previous cutting jobs. If aWaste is true then such stock will be used first before any actual stocks that have aWaste
as false.

bool AddLinearStock (double ALength, int aCount)
Creates aCount new linear stocks with the specified length. After the optimization is done the list of used and un-
used stocks gets created.

bool AddLinearStock(double ALength)
Same as AddLinearStock (ALength, 1).

bool AddLinearPart(double aLength , int aCount)
Creates and stores aCount new linear (1D) segments defined by aLength parameters.
The method returns true if the segments have been successfully created and added. Otherwise returns false. The
segments created by this method are stored in internal part list.

bool AddLinearPart(double aLength , int aCount, string aID)
In addition to the previous method it uses user-defined string aID (part label) that is assigned to the part.

bool AddLinearPart(double aLength)
Same as AddLinearPart(aLength , 1).

bool AddLinearPart(double aLength , int aCount,
 double aAngleStart, double aAngleEnd)
Creates and stores aCount new linear (1D) segments defined by aLength parameters with start and end angles
defined as described below.
The method returns true if the segments have been successfully created and added. Otherwise returns false. The
segments created by this method are stored in internal part list.

bool AddLinearPart(double aLength , int aCount,
 double aAngleStart, double aAngleEnd, string aID)
In addition to the previous method it uses user-defined string aID (part label) that is assigned to the part.

Linear Properties
LinearMaxSizePerStock.
This property specifies maximum number different lengths that can be cut from one stock. For example: there are
parts with three different lengths: 10 of 2m, 8 of 3m and 5 of 4m. If the property is not specified or set to be 0 then
the engine calculate a cutting layout for one stock using all three sizes (2m, 3m and 4m). If the property set to 2
then the engine will use only two sizes: (2m, 3m) or (2m, 4m) or (2m, 4m) to generate cutting layout for one stock.
Using this property may result in more material waste therefore there is another property:

LinearMaxSizePerStockThreshold to fine-tune the engine and allow more part lengths to be used. If a
cutting layout material utilization is less than specified threshold then the engine will ignore the
LinearMaxSizePerStock and use a different length.

Copyright © 2025 Optimalon Software Ltd. 8

Setting LinearMaxSizePerStockThreshold = 0 forces the engine always obey the
LinearMaxSizePerStock constraint and produce more waste as a result. Setting
LinearMaxSizePerStockThreshold = 1.0 will relax the engine to produce less waste and may violate
LinearMaxSizePerStock constraint for some layouts.

LinearSortAscending defines sorting linear parts on stocks in ascending (true) (increasing length) or
descending (false) order.

Combining Linear Stocks.

When some parts longer than any stocks, this option allows combining several stocks into one. Newly combined
stock will be used as any other user-defined stocks with ID as a combination of each consistent stock.

MaxSizePerStock Allows to combine several linear stocks into a big one to accommodate parts that exceed
any of specified stocks:
0: Do not allow combining stocks (default mode).
-1: Allow to combine unlimited number of stock length.
Any positive number specifies how many different stock lengths can be combine into one stock.
For example: having stocks of 10, 12 and 18 the user wants to combine only two different sizes
(MaxSizePerStock = 2), the combination of stock lengths will be (10; 10 and 12; 10 and 18; 12; 12 and 18;
18).

AllowCombineStockRegularAndWaste. If you have specified any waste stocks (remnants from previous
cuts) you can combine them to actual stocks by selecting this option.
Setting AllowCombineStockRegularAndWaste = false will force strictly actual stocks or waste ones
without mixing them.

Copyright © 2025 Optimalon Software Ltd. 9

Angle Cutting Information and Properties

CutGLib assumes all cuts start at the bottom side of stocks and go to the top side. Therefore angles are measured
from the bottom point (cut’s start) of stocks and go counterclockwise direction toward a top point (cut’s end).
Allowed range of angles is from 10° to 170°

double CrossSection;

The cross-section size is used to calculate the horizontal cutting difference according the formula:
HorizDif = CrossSection * Tangency(Angle - 90°)

If HorizDif is negative then the top point (cut’s end) is located on the right side of the bottom point (cut’s start). This
happens for angles less than 90°. If HorizDif is positive then top point (cut’s end) is located on the left side of the
bottom point (cut’s start). This happens for angles bigger than 90°.

bool LinearExactAngle;

Different parts in your project could have different cutting angles. You can set this property to False to allow cutting
parts with different adjacent angles.

For example, the first part has end cut angle of 60° and the second one has beginning cut angle of 45° . If this
property is False then CutGLib could place the second part after the first one.
If you set LinearExactAngle = True then second part must have beginning angle of 60°.

If you set LinearExactAngle = False then optimization engine has more flexibility and the results will be more
optimized.

This is an example of a cutting layout when this property set to True:

This is an example of a cutting layout when this property set to False:

Copyright © 2025 Optimalon Software Ltd. 10

bool LinearAllowRotate ;

When you cut non-symmetrical stocks, such as profile beams it’s important to preserve the cutting angles as they
specified. If you cut symmetrical stock, such as pipe, bars or tubes the cutting angles can be turned by 180° to get
more optimized results.
For example, the first part has end angle of 60° and the secon d part has beginning angle of 120°. Cutting the
second part after the first will produce some material waste. However, if we turned the second part upside-down (by
180°) then the start angle would become 60° and the re would be no waste during the cutting.
Bottom line - if you cut symmetrical stocks set LinearAllowRotate = True.
This is an example of a cutting layout when this property is True:

Note: Angles in the bracket have been rotated. If the ori ginal angle was 65° then when a part gets rotated
the angle became (135°).

bool LinearAllowFlipping ;

This option allows flipping parts by swapping/exchanging their start and end angles. Together with allow rotating
options it can produce more optimized results.

For example, the parts have start angle of 45° end angle of 90 °. Without flipping it produces the following layou t:

If we flip the first part and rotate the second part upside-down (by 180°) then the following layout p roduced:

Note: Square brackets indicate the part has been flipped and angles have been modified as well. The original
angle was 45° then when a part gets rotated the ang le became 135°

Copyright © 2025 Optimalon Software Ltd. 11

Rectangular (2D) methods:
bool AddPart(double aWidth, double aHeight, int aCount, bool a Rotatable)
Creates and stores aCount of new rectangular parts defined by aWidth and aHeight parameters. aRotatable
defines if the parts can be rotated during the calculation: if aRotatable is false then the part cannot be rotated and
it’s orientation will be preserved.
The method returns true if the parts have been successfully created and added. Otherwise returns false. The parts
created by this method are stored in the internal list.

bool AddPart(double aWidth, double aHeight, int aCount, bool a Rotatable,
string aID)
In addition to the previous method it uses user-defined string aID (part label) that is assigned to the part.

bool AddPart(double aWidth, double aHeight, bool a Rotatable)
Same as AddPart(aWidth, aHeight, 1, a Rotatable).

bool AddPart(double aWidth, double aHeight, int aCount)
Same as AddPart(aWidth, aHeight, aCount , true).

bool AddPart(double aWidth, double aHeight)
Same as AddPart(aWidth, aHeight, 1 , true).

bool AddStock (double aWidth , double aHeight, int aCount, string aID)
Creates and store aCount of the rectangular stocks specified by aWidth , aHeight and text aID.
If several different stock sizes are defined then the calculation engine tries to find out the combination of stocks that
produces the least used area.

bool AddStock (double aWidth , double aHeight, int aCount, string aID, bool
aWaste)
Similar to previous method, but has extra parameter aWaste , that defines if the stock is a waste / leftover from
previous cutting jobs. If aWaste is true then such stock will be used first before any actual stocks that have aWaste
as false.

bool AddStock (double aWidth , double aHeight, int aCount)
Creates and store aCount of the rectangular stocks specified by aWidth and aHeight.
If several different stock sizes are defined then the calculation engine tries to find out the combination of stocks that
produces the least used area.

bool AddStock (double aWidth , double aHeight)
Same as AddStock (aWidth , aHeight, 1).

void SetVerticalCutDirection(bool aRollMode)
Suitable for roll (stripe) cutting. If aRoolMode is True then it ensures the first cut is made completely from the
stock’s top to the bottom.

void SetVerticalCutDirection()
Defines the stock will be first cut vertically. Same as SetVerticalCutDirection(false).

void SetHorizontalCutDirection(bool aRollMode)
Suitable for roll (stripe) cutting. If aRoolMode is True then it ensures the first cut is made completely from the
stock’s left side to the right one.

void SetHorizontalCutDirection()
Defines the stock will be first cut horizontally. Same as SetHorizontalCutDirection(false).

void SetAutoCutDirection()
Defines the calculation engine will automatically detect what direction produce better results and use this direction
to cut the stock first time.

Copyright © 2025 Optimalon Software Ltd. 12

Calculation Methods:

Linear (1D) method:

string ExecuteLinear();
string ExecuteLinear(OnCalcState aCalcStateEvent);
Performs 1D-cutting calculation of the linear parts in the source list on the stocks that sizes are defined by
AddLinearStock() . It calculates the parts layout and defines number of stocks (UsedLinearStockCount)
required to cut all parts. Returns empty string if calculation was done successfully. Otherwise returns an error
message.

Rectangular (2D) method:

string Execute();
string Execute(OnCalcState aCalcStateEvent);
Performs guillotine cutting calculation of the parts in the source list on the specified (AddStock) stocks. Only
orthogonal cuts from one side completely to another side are allowed.
It calculates the parts layout and defines number of stocks (UsedStockCount) required to cut all parts.
Returns empty string if calculation was done successfully. Otherwise returns an error message.

void OnCalcState(ref bool aStop)
Optional callback function OnCalcState provides a way to cancel the execution at any time by setting
referenced parameter aStop = true.

Copyright © 2025 Optimalon Software Ltd. 13

Result Methods:

bool GetLayoutInfo(int aIndex, out int aFirstStock, out int aStockCount);
Gets information about the layout aIndex, such as index of the first stock (aFirstStock) in the layout and count of
stocks (aStockCount) that share the same layout. aIndex is from 0 to LayoutCount - 1 . Function returns True if
the layout information successfully retrieved.

double GetLayoutFillRatio(int aLayout);
Gets layout’s fill ratio in value between 0 and 1.

int GetPartCountOnStock(int aStockNo);
Returns number of parts cut (or placed) from the specified stock aStockNo .

int GetPartIndexOnStock(int aStockNo, int aPartNo);
Returns the global part index cut (or placed) from the specified stock aStockNo . aPartNo is the part ordinal number
and goes from 0 to GetPartCountOnStock (aStockNo) – 1.

int GetRemainingPartCountOnStock(int aStockNo);
Returns number of remaining / waste parts left from the specified stock aStockNo .

int GetRemainingPartIndexOnStock(int aStockNo, int aPartNo);
Returns the global remaining part index left over from the specified stock aStockNo . aPartNo is the part ordinal
number and goes from 0 to GetRemainingPartCountOnStock (aStockNo) – 1.

Copyright © 2025 Optimalon Software Ltd. 14

Linear (1D) methods:

int GetLinearCutsCount();
Gets the count of global linear cuts.

bool GetLinearCut(int aIndex , out int aStock, out double aLocation)
Gets the linear cut with the specified global index (from 0 to GetLinearCutsCount -1). Each cut is defined by
aLocation point and indicates the position where to cut the linear StockNo . Returns false if the cut index is out of
range.

bool GetLinearCut(int aIndex , out int aStock,
 out double aLocation,
 out double aAngle)
Gets the linear cut with the specified global index (from 0 to GetLinearCutsCount -1). Each cut is defined by
aLocation point and indicates the position where to cut the linear StockNo . Returns false if the cut index is out of
range. aAngle defines the angle with which the cut needs to be done.

int GetStockCutCount(int a Stock);
Gets the count of cuts for the specified linear stock.

bool GetLinearStockCut(int aStock, int aCut,
 out double aLocation,
 out double aAngle)
Gets the linear cut with the specified index for the specified stock. Each cut is defined by aLocation start point and
cutting angle aAngle . Returns false if the cut index is out of range (0.. GetStockCutCount-1).

bool GetResultLinearPart(int aPart,
 out int Stock,
 out double aLength,
 out double aLocation);
Gets the length and calculated position of the linear part (1D) with the specified part index aPart .
aStock indicates the stock the part was cut from.
aPart is the same index from the source list and it goes from 0 to PartCount – 1.
The method returns false if the part aPart was not cut from the stock, for example, in case of incomplete
optimization (CompleteMode = false).
aLocation defines the position of the part on the stock.

bool GetResultLinearPart(int aPart,
 out int Stock,
 out double aLength,
 out double aLocation,
 out string aID);
In addition to the previous method this one returns user-defined string aID (part label) that has been assigned to the
part by AddLinearPart() method.

Copyright © 2025 Optimalon Software Ltd. 15

bool GetResultLinearPart(int aPart,
 out int Stock,
 out double aLength,
 out double aAngleStart,
 out double aAngleEnd,
 out double aLocation,
 out bool aRotated);
Gets the length, calculated position, start and end cutting angles and rotated status of the linear part (1D) with the
specified part index aPart .
aStock indicates the stock the part was cut from.
aPart is the same index from the source list and it goes from 0 to PartCount – 1.
The method returns false if the part aPart was not cut from the stock, for example, in case of incomplete
optimization (CompleteMode = false).
aLocation defines the position of the part on the stock.
aAngleEnd and aAngleEnd define part’s start and end angles.
aRotated defines if the part has been rotated by 180° along its axis to get better match of its start and end
angles.

bool GetResultLinearPart(int aPart,
 out int Stock,
 out double aLength,
 out double aAngleStart,
 out double aAngleEnd,
 out double aLocation,
 out bool aRotated,
 out string aID);
In addition to the previous method this one returns user-defined string aID (part label) that has been assigned to the
part by AddLinearPart() method.

bool GetRemainingLinearPart(int aPart,
 out int aStock,
 out double aLength,
 out double aLocation);
Gets the length and calculated position of the remaining part (cut-off) left over linear cuts from the stock.
aStock indicates the stock the part was left from.
aPart is from 0 to RemainingPartCount – 1 .
The method returns false if the index is more or equal to the number of remaining parts.

bool GetRemainingLinearPart(int aPart,
 out int aStock,
 out double aLength,
 out double aLocation,
 out double aAngle);
Gets the length and calculated position of the remaining part (cut-off) left over linear cuts from the stock.
aStock indicates the stock the part was left from.
aPart is from 0 to RemainingPartCount – 1 .
aAngle defines the angle of the waste part cut in case of angled cutting. If it’s 0 then angle cut has not been used.
The method returns false if the index is more or equal to the number of remaining parts.

bool GetLinearStockInfo(int aStock ,

out double aLength, out bool aActive, out string aID)
Returns the length and text ID of the stock with specified Index aStock . The aStock is the same as aStock
parameter in previous methods (GetResultLinearPart() and GetRemainingLinearPart()).
aActive indicates the stock was used during the calculation. If aActive is false then this stock was not used.
aStock is a global index of all stocks (used and not used) specified in the system and goes from 0 to
LinearStockCount – 1.

Copyright © 2025 Optimalon Software Ltd. 16

int GetLinearCombineStockCount(int aStock)

Gets the count of actual linear stocks used to get the specified combined linear stock. If the stock was not
combined then returns 0.

int GetLinearCombineStockInfo (int aStock , int aIndex ,
out double aLength, out bool aActive, out string aID)
Returns information about actual stock aIndex that combined into the stock aStock. All returning parameters are
the same as in GetLinearStockInfo() method.

Example of getting combined stocks information:

Calculator.GetLinearStockInfo(iStock, out width, out stockActive);

if (stockActive)

{

 int simpleCount = Calculator.GetLinearCombineStockCount(iStock);
 for (int iSimple = 0; iSimple < simpleCount; iSimple++)

 {

 Calculator.GetLinearCombineStockInfo(iStock, iSimple, out width, out stockActive , out

stckID);

 }

}

Copyright © 2025 Optimalon Software Ltd. 17

Rectangular (2D) methods:

bool GetResultPart(int aPart,
 out int aStock,
 out double aWidth, out double aHeight,
 out double aX, out double aY,
 out bool aRotated);
Gets the size and calculated position of the specified part.
If the part was rotated during the calculation then Rotated is true. aWidth and aHeight don't get changed during
part rotation and their values are preserved.
aStock indicates the stock the part was cut from.
aPart is the same index from the source list and it goes from 0 to PartCount – 1.
The method returns false if the part aPart was not cut from the stock, for example, in case of incomplete
optimization (CompleteMode = false).

bool GetResultPart(int aPart,
 out int aStock,
 out double aWidth, out double aHeight,
 out double aX, out double aY,
 out bool aRotated,
 out string aID);
In addition to the previous method this one returns user-defined string aID (part label) that has been assigned to the
part by AddPart() method.

bool GetRemainingPart(int aPart,
 out int aStock,
 out double aWidth, out double aHeight,
 out double aX, out double aY);
Gets the size and calculated position of the remaining part left over guillotine cuts from the stock.
aPart is from 0 to RemainingPartCount – 1 .
The method returns false if the index is more or equal to the number of remaining parts.

bool GetStockInfo(int aStock ,
 out double aWidth , out double aHeight,
 out bool aActive, out string aID)
Returns the sizes and text ID of the used stock with specified Index. aStock is a global index of all stock (used and
not used) specified in the system goes from 0 to StockCount -1.
aActive indicates the stock was used during the calculation. If aActive is false then this stock was not used.

int GetPartCutsCount(int aPart);
Returns the number of nesting cuts to be done for the specified part. aPart indicates the index of the part. Returns -
1 if the index is out of bonds (0..PartCount -1)

bool GetPartCut(int aPart, int aCut,
 out int aStock,
 out double aStart_X, out double aStart_Y,
 out double aEnd_X, out double aEnd_Y);
Gets the nesting cut aCut for the specified part (aPart). Each cut is defined by Start point and End point.
Each point is defined by X and Y coordinates.
Returns false if the part index more or equal to the number of parts or aCut is more or equal to the number of cuts
for the part.

Copyright © 2025 Optimalon Software Ltd. 18

Getting cuts

int GetCutsCount();
Returns global number of guillotine cuts.

bool GetCut(int aCut, out int aStock,
 out double aStart_X, out double aStart_Y,
 out double aEnd_X, out double aEnd_Y);
Gets the guillotine cut with the specified index. aStock indicates the stock index the cut is made for. Each cut is
defined by Start point and End point. Each point is defined by X and Y coordinates. Guillotine cuts must be done in
the order defined by the calculation, e.a. 0,1,2, etc. One should not make cut 3 before cut 2.
Returns false if the cut index is out of range (0.. GetGuillotineCutsCount -1).

bool GetCut(int aCut, out int aStock,
 out double aStart_X, out double aStart_Y,
 out double aEnd_X, out double aEnd_Y ,
 out int aLevel);
Additional output parameter aLevel defines the level of the cut (0 - rip cut, 1 - cross cut, etc.).

int GetStockCutCount(int a Stock);
Gets the count of guillotine cuts for the specified stock.

bool GetStockCut(int aStock, int aCut,
 out double aStart_X, out double aStart_Y,
 out double aEnd_X, out double aEnd_Y);
Gets the guillotine cut with the specified index for the specified stock. Each cut is defined by Start point and End
point. Each point is defined by X and Y coordinates. Guillotine cuts must be done in the order defined by the
calculation, e.a. 0,1,2, etc. One should not make cut 3 before cut 2.
Returns false if the cut index is out of range (0.. GetStockCutCount-1).

bool GetStockCut(int aStock, int aCut,
 out double aStart_X, out double aStart_Y,
 out double aEnd_X, out double aEnd_Y,
 out int aLevel);
Additional output parameter aLevel defines the level of the cut (0 - rip cut, 1 - cross cut, etc.).

int GetStockTrimCutCount(int a Stock);
Gets the count of guillotine trim cuts for the specified stock.

bool GetStockTrimCut(int aStock, int aCut,
 out double aStart_X, out double aStart_Y,
 out double aEnd_X, out double aEnd_Y);
Gets the trim cut with the specified index for the specified stock. Each trim cut is defined by Start point and End
point. Each point is defined by X and Y coordinates. Trim cuts are done prior to the actual cutting.
Returns false if the cut index is out of range (0.. GetStockTrimCutCount-1).

bool GetStockTrimCut(int aStock, int aCut,
 out double aStart_X, out double aStart_Y,
 out double aEnd_X, out double aEnd_Y,
 out int aLevel);
Additional output parameter aLevel defines the level of the cut (0 – main trim cut, 1 – second trim cut orthogonal to
the main one).

Copyright © 2025 Optimalon Software Ltd. 19

Export results to file

CutGLib provides several methods to export cutting optimization results as external files in different formats.

Image File

bool CreateStockImage(int aStock,
 string aImageFileName,
 int aMaxSize);
Generates image file (PNG format) with the specified name for the specified 2D (panel) stock. aMaxSize defines
the maximum image file width or height. If a stock has width = 500 and height = 1000 then the PNG image will be
500x1000 pixels. It returns true if the file has been created successfully.

bool CreateStockImage(int aStock, string aImageFileName);
Same as CreateStockImage(aStock, aImageFileName, 1000);

bool CreateStockImage_Stream(int aStock,
 S tream aImageStream,
 int aMaxSize);
Writes image file (PNG format) to the specified stream. This method is similar to CreateStockImage() and
only available for .Net client applications.

bool CreateLinearStockImage(int aStock,
 string aImageFileName,
 int aMaxSize);
Generates image file (PNG format) with the specified name for the specified 1D (linear) stock. aMaxSize defines
the maximum image file width. If a stock has length = 500 then the PNG image will have width of 500 pixels. It
returns true if the file has been created successfully.

bool CreateLinearStockImage(int aStock, string aImageFileName);
Same as CreateLinearStockImage(aStock, aImageFileName, 1000);

bool CreateLinearStockImage_Stream(int aStock,
 S tream aImageStream,
 int aMaxSize);
Writes image file (PNG format) to the specified stream. This method is similar to
CreateLinearStockImage() and only available for .Net client applications.

AutoCAD DXF

bool ExportToDXF(string aFileName, bool aIncludePartIDs);
Generates AutoCAD DXF file (version R12) with the specified name for all used stocks.
For each exported stock the export creates a new layer with name Panel_1, Panel_2, etc.
Boolean parameter aIncludePartIDs defines if the part labels (IDs) will be exported to DXF file as well.

bool ExportCutsToDXF(string aFileName, bool aIncludeCutNumber, bool
aIncludeStockPanel);
Generates AutoCAD DXF file (version R12) with the specified name for all used stocks.
For each exported stock the export creates a new layer with name Panel_1, Panel_2, etc. It fills the list of cutting
planes (cuts). Boolean parameter aIncludeCutNumber defines if the cut labels (1,2,3,etc.) will be exported to
DXF file as well. Boolean parameter aIncludeStockPanel indicates the stock panel rectangle lines will be
included into DXF file. If this parameter is False then only cutting planes will be exported.

Copyright © 2025 Optimalon Software Ltd. 20

Excel CSV

bool ExportToCSV(string aFileName);
Generates text comma-separated file (CSV) with the specified name for all used parts combined by the stocks.

Pattern Exchange Format (PTX)

The Pattern Exchange (PTX) format is a standard format for describing parts, boards, patterns and cutting
information and can be used directly for some CNC saw machines.

bool ExportToPTX(string aFileName,
 string aJobName,

string aCustomer ,
string aMaterial ,
double aMaterialThickness,
int aUnits,
double aUnitScale);

The file contains one job and one material.
aJobName – Job number/name - reference for job.
aCustomer – Customer code or name.
aMaterial – Material code.
aMaterialThickness – Material thickness in appropriate measurement mode.
aUnits - Measurement mode = 0 (metric), 1 (decimal inches).
aUnitScale - A factor all coordinates and sizes will be multiplied by to get values in mm or inches.
 If a project is done in centimeters then the aUnitScale = 10.
 If it’s done in millimeters then the aUnitScale = 1.

Copyright © 2025 Optimalon Software Ltd. 21

Licensing.

In order to use CutGLib after 30-days trial period the library requires activation of the license.
There are two license types:

1. Single – issued for the particular computer and links to its hardware configuration. If the library moved to
another computer then the license will not work and another activation is required.

2. Site – this license is issued to the company (or individual) with a unique license key that allows to use the
library on unlimited number of computer. The Site license provides developers with ability to distribute
CutGLib with their applications to the end-users.

The Single license activation requires the hardware code from the computer where CutGLib will be used. This code
is accessible from the method string ComputerHardwareCode () :

// First we create a new instance of the cut engine
CutEngine Calculator = new CutEngine();
// Activation of the single license
string HardwareCode = Calculator.ComputerHardwareCode();

This code (HardwareCode) needs to be used at Optimalon Software website to generate the license key at the
URL: https://www.optimalon.com/License/LicData

In order to activate Single license the client needs to call the method in their code after creation of the cut engine
instance:

// First we create a new instance of the cut engine
CutEngine Calculator = new CutEngine();
// Activation of the single license
Calculator.SetComputerLicenseKey(< License_Key>);

If client has more than one single license they all can be registered within the calculation engine using the following
method:
Calculator.RegisterComputerLicenseKey(<HardwareCode>, <License_Key>);
This method needs to be called for all licenses the user has.

In order to activate registered licenses the following method should be called:
Calculator.LoadRegisteredComputerLicenseKey();

The Site license does not require the hardware code and can be used for many computers.
In order to activate Site license the client needs to call the method in their code after creation of the cut engine
instance:

// First we create a new instance of the cut engine
CutEngine Calculator = new CutEngine();
// Activation of the site license
Calculator.SetSiteLicenseKey(< License_Key>);
Where License_Key is a text site license key received from Optimalon Software.

The Server license does not require the hardware code and can be used on web servers with shared environments
like Azure or other cloud solutions.
In order to activate Server license the client needs to call the method in their code after creation of the cut engine
instance:

// First we create a new instance of the cut engine
CutEngine Calculator = new CutEngine();
// Activation of the site license
Calculator.SetServerLicenseKey(< License_Key>);
Where License_Key is a text site license key received from Optimalon Software.

Copyright © 2025 Optimalon Software Ltd. 22

3. Example of the Library Usage. (C# syntax)

3.1. Cut one linear stock.

This example demonstrates how to cut a linear stock (log/beam/wire) with size of 10.0 feet.
Let say we need to cut 9 parts of 3.0 feet, 3 parts of 5.0 feet and 2 parts of 7.0 feet.

// First we create a new instance of the cut engine
CutEngine Calculator = new CutEngine();

// Add 7 linear stocks of 10.0 feet
Calculator.AddLinearStock(10.0, 7);

// Add linear pieces we have to cut from the stock:
Calculator.AddLinearPart(3.0, 9); // 9 pieces of 3.0 feet
Calculator.AddLinearPart(5.0, 3); // 3 pieces of 5.0 feet
Calculator.AddLinearPart(7.0, 2); // 2 pieces of 7.0 feet

// Run the calculation:
string result = Calculator.ExecuteLinear();

// If result is not empty then it has an error mess age
if (result == "")
{
 // Calculator. UsedLinearStockCount specifies the number of linear stocks required.
 Console .Write("Need {0} linear stocks" , Calculator.UsedLinearStockCount);

 int StockNo;
 double Len = 0, X = 0;
 // Get the results. Here we just iterate by parts and and get
 // indices of stocks where a part has to be cut f rom
 for (int iPart = 0; iPart < Calculator.PartCount; iPart++)
 {
 if (Calculator.GetResultLinearPart(iPart, out StockNo, out Len, out X))

{
 // StockNo specifies the stock part iPart gets cut from
 // Len is the length of the part iPart
 // X is the coordinate of the part iPart on the stock S tockNo.

 Console .Write("Part {0}: stock={1} X={2}; Length={3}" ,
 iPart, StockNo, X, Len);
 }
 else Console .Write("Source piece {0} was not placed\n" , iPart);
 }
}
else
{
 // Output the error message
 Console .Write("%S" , result);
}

Copyright © 2025 Optimalon Software Ltd. 23

3.2. Cut multiple size linear stocks.

This example demonstrates how to cut a linear stock (log/beam/wire) with different sizes.
Let say we need to cut 6 pieces of 11.0 feet, 8 pieces of 9.0 feet, 12 pieces of 7.0 feet and 4 pieces of 16.0 feet.
There are 10 stocks of 20.0 feet, 5 stocks of 31.0 feet and 5 of 34.0 feet.

// First we create a new instance of the cut engine
CutEngine Calculator = new CutEngine();
// Add 10 linear stocks of 20.0 feet
Calculator.AddLinearStock(20.0, 6);
// Add 5 linear stocks of 31.0 feet
Calculator.AddLinearStock(31.0, 5);
// Add 5 linear stocks of 34.0 feet
Calculator.AddLinearStock(34.0, 5);
// Add linear pieces we have to cut from the stock:
Calculator.AddLinearPart(11.0, 6); // 6 pieces of 11.0 feet
Calculator.AddLinearPart(9.0, 8); // 8 pieces of 9.0 feet
Calculator.AddLinearPart(7.0, 12); // 12 pieces of 7.0 feet
Calculator.AddLinearPart(16.0, 4); // 4 pieces of 16.0 feet
// Run the calculation
string result = Calculator. ExecuteLinear();
if (result != "")
{
 // Output the error message and exit
 Console .Write("%S" , result);
 return;
}

Now we use another approach to output results. The calculation created several different cutting layouts, so let’s
iterate by layouts and output the stock length used for each layout and parts cut.

int StockIndex,StockCount,iPart,iLayout,partCount,part Index,tmp,iStock;
double partLength,X,StockLength;
bool StockActive;
for (iLayout = 0; iLayout < Calculator.LayoutCount; iL ayout++)
{
 // StockIndex is global index of the first stock used in the lay out iLayout
 // StockCount is quantity of stocks of the same length as StockI ndex used
 Calculator.GetLayoutInfo(iLayout, out StockIndex, out StockCount);
 // Iterate by each stock in the layout, starting fr om StockIndex
 for (iStock = StockIndex; iStock < StockIndex + StockC ount; iStock++)
 {
 // Output the stock index and length

Calculator.GetLinearStockInfo(iStock, out StockLength, out StockActive);
 Console .Write("Stock={0}: Length={1}" , iStock, StockLength);
 // Output the information about parts cut from this stock
 // Get quantity of parts cut from the stock:
 partCount = Calculator.GetPartCountOnStock(iSto ck);
 // Iterate by parts and get indices of cut parts
 for (iPart = 0; iPart < partCount; iPart++)
 {
 // Get global part index of iPart cut from the curr ent stock
 partIndex = Calculator.GetPartIndexOnStock(iS tock, iPart);
 // Get length and location of the part
 // X - coordinate on the stock where the part beggins.
 Calculator.GetResultLinearPart(partIndex, out tmp, out partLength, out X);
 // Output the part information
 Console .Write("Part= {0}: X={1}; Length={2}" , partIndex, X, partLength);
 }
 }
 }

Copyright © 2025 Optimalon Software Ltd. 24

3.3. Cut one size stock.

This example demonstrates how to cut a 2D rectangular stock panels with size of 2400x2000 mm.
Let say we need to cut 9 parts of 640x420 mm, 14 parts of 150x720 mm and 12 parts of 1000x420 mm. In addition
the 14 parts of 150x720 mm cannot be rotated.

// First we create a new instance of the cut engine
CutEngine Calculator = new CutEngine();
Calculator.AddStock(2400, 2000, 5); // Add 5 stocks of 2400x2000 mm
// Add parts we have to cut from the stock:
Calculator.AddPart(640, 420, 9); // 9 parts of 640x420 mm
Calculator.AddPart(150, 720, 14, false); // 14 non-rotatable parts of 150x720 mm
Calculator.AddPart(1000, 420, 12); // 12 parts of 1000x420 mm
// Run the calculation:
string result = Calculator.Execute();

Let’s output the information about the parts, the stock indices and locations the parts cut from:
double W = 0, H = 0, X = 0, Y = 0;
bool Rotated;
int StockNo;
Console .Write("Part Count={0}" , Calculator.PartCount);
for (int iPart = 0; iPart < Calculator.PartCount; iPar t++)
{
 if (Calculator.GetResultPart(iPart, out StockNo, out W, out H,
 out X, out Y, out Rotated))
 {

// StockNo – stock index the part iPart cut from
// W, H – part width and height
// X, Y – coordinates of the top left corner of the part o n the stock StockNo
// If Rotated is true then the part has been roated by 90°
Console .Write("Part {0}: stock={1} X={2}; Y={3}; Width={4}; H eight={5}" ,

 iPart, StockNo, X, Y, W, H);
 }
 else Console .Write("Part {0} was not placed" , iPart);
}

Also let’s output the information about the cuts we need to make (important for CNC machines). Each cut defined
by two pairs of coordinates: Cut Start (X1, Y1) and Cut End (X2, Y2).

int StockNo, iCut, CutsCount;
double Width, Height, X1 = 0, Y1 = 0, X2 = 0, Y2 = 0;
bool active;
// Output guilltoine cuts for each stock
for (StockNo = 0; StockNo < Calculator.StockCount; Sto ckNo++)
{
 Calculator.GetStockInfo(StockNo, out Width, out Height, out active);
 // Stock was not used during calculation and we ski p it
 if (!active) continue ;
 // First output any trim cuts for the stock StockNo
 CutsCount = Calculator.GetStockTrimCutCount(Stock No);
 for (iCut = 0; iCut < CutsCount; iCut++)
 {
 Calculator.GetStockTrimCut(StockNo, iCut, out X1, out Y1, out X2, out Y2);
 }
 // Now output any actual cuts for the stock StockNo
 CutsCount = Calculator.GetStockCutCount(StockNo);
 for (iCut = 0; iCut < CutsCount; iCut++)
 {
 Calculator.GetStockCut(StockNo, iCut, out X1, out Y1, out X2, out Y2);
 }
}

Copyright © 2025 Optimalon Software Ltd. 25

3.4. Cut multiple size stocks.

This example demonstrates how to cut a 2D rectangular stock/panels with different sizes. All parts cannot be
rotated.

// First we create a new instance of the cut engine
CutEngine Calculator = new CutEngine();
Calculator.AddStock(2000, 2400, 5); // 5 stocks of 2000x24000
Calculator.AddStock(1800, 2000, 5); // 5 stocks of 1800x2000
Calculator.AddStock(1200, 1600, 10); // 10 stocks of 1200x1600
// Add parts we have to cut from the stocks:
Calculator.AddPart(650, 450, 36, false); // 36 non-rotatable parts of 650x450 mm
Calculator.AddPart(650, 732, 24, false); // 24 non-rotatable parts of 650x732 mm
Calculator.AddPart(500, 430, 24, false); // 24 non-rotatable parts of 500x430 mm
Calculator.AddPart(163, 422, 36, false); // 36 non-rotatable parts of 163x422 mm
Calculator.AddPart(444, 363, 36, false); // 36 non-rotatable parts of 444x363 mm
Calculator.AddPart(104, 362, 36, false); // 36 non-rotatable parts of 104x362 mm
// Run the calculation
string result = Calculator.Execute();

Let’s iterate by layouts and output the stock sizes used for each layout and parts cut.

int stockIndex,stockCount,iPart,iLayout,partCount,part Index,tmp,iStock;
double width,height,X,Y,W,H;
bool rotated,stockActive;
string Txt;
Console .Write("Used {0} stocks" , Calculator.UsedStockCount);
Console .Write("Created {0} different layouts" , Calculator.LayoutCount);
// Iterate by each layout and output information ab out each layout,
// such as number and length of used stocks and par t indices cut from the stocks
for (iLayout = 0; iLayout < Calculator.LayoutCount; iL ayout++)
{
 Calculator.GetLayoutInfo(iLayout, out stockIndex, out stockCount);
 // Output information about each stock, such as sto ck Length
 for (iStock = stockIndex; iStock < stockIndex + stockC ount; iStock++)
 {
 Calculator.GetStockInfo(iStock, out width, out height, out stockActive);
 Console .Write("Stock={0}: Width={1}; Height={2}" , iStock, width, height);
 // Output the information about parts cut from this stock
 // First we get quantity of parts cut from the stoc k
 partCount = Calculator.GetPartCountOnStock(iSto ck);
 // Iterate by parts and get indices of cut parts
 for (iPart = 0; iPart < partCount; iPart++)
 {
 // Get global part index of iPart cut from the curr ent stock
 partIndex = Calculator.GetPartIndexOnStock(iS tock, iPart);
 // Get sizes and location of the source part with i ndex partIndex
 Calculator.GetResultPart(partIndex,
 out tmp, out W, out H, out X, out Y, out rotated);
 // W, H – widht and height of the part partIndex

 // X, Y – coordinates of the top left corner of the part o n the stock iStock
 // If rotated is true then the part has been roated by 90°

 Console .Write("Part={0}; stock={1}; Width={2}; Height={3}; X={4}; Y={5}" ,
 partIndex, iStock, W, H, X, Y);
 }
 }
}

