Linear Programming Library Gipals32.

Copyright © 2004-2011 Optimalon Software Ltd. All rights reserved.

http://www.optimalon.com

T o1t = U g o1 4= LT] o AT ERPTP 1
W2 o = U Y 1] (= 5 - T = R PRERRR 2
2.1. Specifying and Updating VariableSuuiiiiiie et e e e e e s s e e e e e s s et e e e e ee e e s e nnnnraaeeaaees 2
2.2. Specifying and Updating CONSITAINTS...........uuuiiiieiiiiiiiiie e e e e e e s s e e e e e e e s ssta e e e e e e s s asnteaeeereeessannraneeaaeens 3
2.3. IMpPOrting LP frTOM MPS fll@ ...t e e e et e e e e e e s et e et e e e s e e n b e e e e e e e e s e annraarraeaen 5
S - (o U1 = 4 o PRSPPI 6
2.5. Getting the CalCulation RESUILS.........oooo ettt e e e e e e et e e e e e e e e e aanbe e e e e e e e s e annnbeeeeeaaans 7
A R OF= 1 (o0 oA o] g IR T= 1 4] o LU RTR SRR 7

1. General Information.

Gipals32 is a software library to solve the linear problems (LP) containing unlimited number of variables and
constraints.

The library provides the following possibilities:
* Create new LP.
* Import new LP from an existing file in MPS format.
» Alter the specified LP by changing variables or constraints coefficients.
» Specify the settings for the linear programming solver to tune the calculation engine according to the user’'s
needs.
* Perform the calculation.
» Getting the results for successful calculations.

Gipals32 is Windows 32 Dynamic Link Library (DLL) and can be easily integrated into any application developed by

the different programming tools such as Microsoft Visual C++, Microsoft Visual C# .Net, Microsoft Visual Basic,
Microsoft Visual Basic.Net, Borland Delphi and others.

Copyright © 2004-2011 Optimalon Software. 1

2. Library Interface.

All indices are zero-based in the library. Indices are 0..N-1 for N objects.
The functions are described using C# syntax and it's straightforward to translate it to other languages.

2.1. Specifying and Updating Variables
Gipals32 provides several routines to manipulate with decision variables.

i nt AddVari abl e(doubl e Cost, // Objective function coefficient
doubl e Lower, // Lower bound of variable (ignored if LowerInf <> 0)
doubl e Upper, // Upperbound of variable (ignored if Upperinf <> 0)
int Lowerlnf, // If<>0then indicates variable has no lower bound
i nt Upperlnf);// If<>0 thenindicates variable has no upper bound

This function creates a new variable in the LP and sets cost and bounds for this variable. The function returns the
variable’s index if succeeded and -1 if the maximum size (5,000) has been reached. The function can be used to
create a new variable only up to 5,000 variables because behind this size the performance is dramatically slows
down. For the LP with more than 5,000 variables the procedure SetVariableCount should be used.

Del et eVari abl e(i nt I ndex)
This procedure deletes the specified variable from LP.

i nt GetVari abl eCount ()
The function returns the number of the variables that have been specified in the LP.

i nt SetVariabl e(int |ndex, /'l Variable index
doubl e Cost, // Objective function coefficient
doubl e Lower, // Lower bound of variable (ignored if LowerInf <> 0)
doubl e Upper, // Upperbound of variable (ignored if Upperinf <> 0)
int Lowerlnf, // If<>0then indicates variable has no lower bound
i nt Upperlnf [/ If <>0then indicates variable has no upper bound

)

The function setups the parameters of the existing variable Index. If the variable doesn’t exist then returns 0.
Example 1. Creating new variables using AddVariable function:

a) Define a new variable that has cost (objective function coefficient) of 5 and can be any positive humber without
upper bound. Such variable is called “normal variable”.
AddVari abl e(5, 0, 0, 0, 1);

b) Define a new variable that has cost of -5 and can be any positive number not more than 1000. In this case the
upper bound is specified (1000) and the indication the variable has the upper bound is set (0).
AddVari abl e(5, 0, 1000, 0, 0);

c) Define a new variable that has cost of 2.5 and doesn’t have any bounds, it's called “free variable”. In this case
the indications the variable has not lower (1) and upper bounds is set (1).
AddVvariable(2.5, 0, 0, 1, 1);

d) Define a new variable that has cost of 1 and should be any number in between 10 and 150.
AddVari abl e(1, 10, 150, 0, 0);

e) Define a new variable that has cost of 3 and should have only one value 20. This variable is called “fixed
variable” and defined be setting lower and upper bound to the same value.
AddVari abl e(1, 20, 20, 0, 0);

Copyright © 2004-2011 Optimalon Software.

Example 2. Creating new variables using pair of SetVariableCount and SetVariable functions. This is the only way
to specify linear programs with more than 5,000 variables.

Create 10,000 variables at once:
Set Var i abl eCount (10000) ;

Setup properties for first five variables from the previous example. The first parameter indicates the index (in bold) of
the variable and the rest of parameters are the same as for AddVariable function:

SetVvariable(0, 5, 0, 0, 0, 1);

SetVvariable(1l, 5, 0, 1000, 0, 0);

SetVvariable(2, 2.5 0, 0, 1, 1);

Set Vari able(3, 1, 10, 150, 0, 0);

Set Vari able(4, 1, 20, 20, 0, 0);

Function Set Var i abl e also can be used to change some properties of the variable for the existing LP after the
calculation was done. Let say to change the cost of the third variable (Index = 2) from existing value of 2.5 to -4.1

one should call:
Set Variable(2, -4.1, 0, 0, 1, 1);

2.2. Specifying and Updating Constraints
NOTE: Only non-zero constraint elements should be specified.

Constraints form the matrix that has as many columns as variables and as many rows as constraints.
There are three types of constraint signs available:

int sign_Less 0; /! <= (LessorEqual)

i nt sign_Equal 1, // = (Equal)

int sign_More 2, |/ >= (More or Equal)

Gipals32 provides several routines to manipulate with the constraints.

i nt AddConstraint (double Right, // Rightside of the constraint
int Sign /' Sign (sign_Less, sign_Equal, sign_More)

)
This function creates a new constraint in the LP and sets its right side and sing. Sing can be one of the constants
described above.
The function returns the constraint’s index if succeeded and -1 if the maximum size (5,000) has been reached. The
function can be used to create a new constraint only up to 5,000 constraints because behind this size the
performance is dramatically slows down. For the LP with more than 5,000 constraints the procedure
SetConstraintCount should be used.

Del et eConstrai nt (i nt | ndex)
This procedure deletes the specified constraint from LP.

voi d Set Constrai nt Count (i nt ACount)
This procedure creates the specified number of the constraints in the LP. This procedure works faster than function
AddConstraint and provides the best performance.

i nt Get Constraint Count ()
The function returns the number of the constraints that have been specified in the LP.

Copyright © 2004-2011 Optimalon Software. 3

i nt SetConstraint(int I|Index, /] Index of the constraint
doubl e Ri ght, // Rightside of the constraint
int Sign /'] Sign (sign_Less, sign_Equal, sign_More)
)
The function setups the right side and the sign of the existing constraint Index. If the constraint doesn’t exist then
returns 0.

i nt Set ConstraintEl ement (int Rowl ndex, // Index of the constraint (row in matrix)
int Varlndex, // Index ofthe variable (column in matrix)
doubl e Val ue // Value of coefficient
)
This function assigns the specified Value to the coefficient for variable Varindex in the constraint RowIndex. In
other words it setups the matrix element at position Row = RowIndex and Column = Varindex to Value. The
function returns 1 if succeeded.

The following two functions provide the best performance during the setting up the constraints. These function are
recommended for middle and big LPs.

int DirectSel ect Constraint(int |ndex /'l Index of the constraint

)
This function prepares the internal LP for specifying (adding elements) the constraint Index. It returns 0 if the
constraint does not exist.

int Direct AddConstraint El ement (i nt | ndex, /| Index of the variable (column in matrix)
doubl e Val ue // Variable coefficient
)
This function appends the specified non-zero element the end of the constraint selected by function
Di r ect Sel ect Const r ai nt . Index indicates the variable and Value specifies the variable coefficient. Variable
indices MUST follow in an ascending order. At the result the constraint looks like sequence of pair (Index, Value).
For example the constraint (0:2.3), (5:-6.3), (6:2.0), (10:8.5) where the bold numbers are indices of all non-zero
elements of the constraint can be specified by the following sequence of calls:
Di rect AddConst rai nt El ement (0, 2. 3);
Di rect AddConst rai nt El ement (5, -6.3);
Di rect AddConstrai ntEl ement (6, 2.0);
Di rect AddConst rai nt El enent (10, 8.5);

WARNING! The following calls are wrong and will result in error during the calculation:

Di rect AddConst rai nt El ement (0, 2. 3);

Di rect AddConstrai nt El ement (6, 2.0); // Error- Element with index 6 must be specified after element 5.
Di rect AddConst rai nt El ement (5, -6.3);

Di rect AddConst r ai nt El ement (10, 8.5);

Example 3. Creating new constraints using AddConstraint and Set Const r ai nt El enent functions:
I nt | ndex;

a) Define a new constraint: 2*X0 — 10.2*X3 + 0.36*X8 <= 50:
I ndex = AddConstraint (50, sign_Less);

Set Constrai nt El enent (1 ndex, 0, 2);

Set Constrai nt El enent (1 ndex, 3, -10.2);
Set Constrai nt El enent (1 ndex, 8, 0.36);

b) Define a new constraint: X1 — X4 + 15*X5 — 10*X6 = -88.5
I ndex = AddConstrai nt (-88.5, sign_Equal);
Set Constrai nt El enent (1 ndex, 1, 1);

Set Constrai nt El enent (1 ndex, 4, -1);

Copyright © 2004-2011 Optimalon Software.

Set Constr ai nt El enent (1 ndex, 5, 15);
Set Constr ai nt El enent (1 ndex, 6, -10);

Example 4. Constraints from Example 3 created using the method with the best performance
Set Const rai nt Count, Set Constrai nt, D rectSel ectConstraint and
Di rect AddConst r ai nt El enment functions:

/ | Create two constraints
Set Const rai nt Count (2) ;

/| Setup the right sides and signs of the constraints
Set Constraint (0, 50, sign_Less);
Set Constraint(1, -88.5, sign_Equal);

/ | Select the first constraint for direct element insertion
Di rect Sel ect Constraint (0);

/ | Direct element insertion

Di rect AddConst rai nt El enent (0, 2);

Di rect AddConst rai nt El ement (3, -10.2);
Di rect AddConst rai nt El ement (8, 0. 36);

/| Select the second constraint for direct element insertion
Di rect Sel ect Constraint(1);

/| Direct element insertion

Di rect AddConstrai ntEl ement (1, 1);

Di rect AddConstrai ntEl enent (4, -1);

Di rect AddConst rai nt El enent (5, 15);

Di rect AddConst rai nt El ement (6, -10);

NOTE: The only methods to change existing constraints are Set Const r ai nt and
Set Constrai nt El enent .

2.3. Importing LP from MPS file
Gipals32 can import linear program specified as a text file in MPS format:

int LoadFromwPS(char[] AFile)

Function clears existing LP and loads a new one from the specified text file. Text file must be in MPS format.

The function returns the following result:
1 if succeeded.
0 if the file is in wrong format
-1 if the maximum allowed number of variables or constraint reached.

After the LP was successfully imported from the MPS file it can be changed by any routines specified above or

calculated right away.

Copyright © 2004-2011 Optimalon Software.

2.4. Calculating
Calculation performs after the LP has been specified.

int Calculate(IntPtr ProcessCall back)

This function performs the calculation and returns on the following results:
nt cal c_None = 0; [/ / Calculation has not been provided yet

[
i nt cal C_Q)tl mal = 1; // Finished with optimal solution

int calc_lnfeasible -1; /] Failed with primal infeasibility

i nt cal c_DblInfeasible -2; |/ Failed with dual infeasibility

i nt cal c_Unknown ;|| Finished because reached the maximum number of iterations
[

[

[

[

nt cal ¢_Subopti nal ;1] Finished due to slow convergence

nt cal c_Stoped ;|| Stopped by the user

nt calc_Error ;|| Failed due to numerical error

nt cal c_Unbounded ;|| Failed because the linear program is unbounded

AP WPA,WN

In general, the successful results are positive and unsuccessful results are negative.

The function has one parameter that is callback function that provides some additional control and can stop or
cancel the whole calculation process. The callback function has the following signature:

int Callback(int IterCount, /'l Index of the current iteration
doubl e Primal Cbj, // Primal objective function value
doubl e Dual Obj, /| Dual objective function value
doubl e InfPrimal, // Primalinfeasibility
doubl e | nf Dual , /| Dual infeasibility
doubl e Optimality // Optimality of the solution
)

This function is an optional function that can stop the iterations with some user-defined checks. When it needs to
stop the calculation it should return one of the predefined values:

int res Abort = -1; // Calculationis canceled
int res None = 0; [/ Calculation continues
int res_Stop = 1; [/ Calculationis stopped and the results are ready

Note: Unfortunately this function is available now only for Visual C++ and Borland Delphi interfaces (you can use
CalculateDlg that provides progress meter during the calculation).

The following function provides the same calculation as previous one. In addition it shows the progress meter dialog
with single button that can interrupt the calculation and return either r es_Abort orres_St op value.
int CalculateD g(int aType, // Type of the build-in dialog (prd_None..prd_MeterButton)

i nt alLeft, // Leftscreen position of the dialog in pixels

i nt aTop, // Top screen position of the dialog in pixels
i nt aWdth, //Width of the dialog in pixels
i nt aButtonResult, //Resultthatreturned when the user pressed the button
char[] aCapti on, // Caption of the dialog
char[] aButton // Texton the button

)

The aBut t onResul t must be eitherr es_Abort orres_St op value. Any other values will be ignored.

The dialog type is defined as the following:

i nt prd_None = 0; // Empty dialog without the progress meter and without the button.
int prd_Meter 1; // Dialog with the progress meter only.

int prd _Button 2; |/ Dialog with the button only.

int prd_MeterButton 3; [/ Dialog with the progress meter and the button.

Copyright © 2004-2011 Optimalon Software. 6

2.5. Getting the Calculation Results

The results are available after the calculation finished with one of successful (positive) states. There are five
functions and their usage is obvious:

doubl e Primal Cbj ective()
Function returns the primal objective function value.

doubl e Dual Obj ective()
Function returns the dual objective function value.

doubl e Primal Val ue(i nt I ndex)
Function returns value of the primal variable with the specified index. Index varies from 0 to GetVariableCount() — 1.

doubl e Dual Val ue(i nt 1 ndex)
Function returns value of the dual variable with the specified constraint index. Index varies from 0 to
GetConstraintCount() — 1.

doubl e ReducedCost Val ue(int | ndex)
Function returns value of the primal variable with the specified index. Index varies from 0 to GetVariableCount() — 1.

2.6. Calculation Settings
The following routines control the calculation process and are optional for the most of optimization tasks.

voi d Set Preprocessor (int Flags)

Function controls the preprocessor’s behavior. It can disable the preprocessing or disable/enable some of checks.
There are the following constants available for this:

int prep_Disable = 0x00; // Disable preprocessor

i nt prep_RenoveFi xedVars 0x01; // Remove all fixed variables

i nt prep_RenoveEnptyCol s 0x02; /! Remove empty columns

i nt prep_RenoveSi ngul ar 0x04; /! Remove singular rows and columns

I

I

I

nt prep_Renoveli near Rows 0x08; // Remove linear-dependent rows
nt prep_RenovelLi near Col s 0x10; // Remove linear-dependent columns
nt prep_For cedRows 0x20; // Remove forced rows

Example 5. Controlling of the preprocessor.

a) Disable preprocessor:

Set Pr eprocessor (prep_Di sabl e);

b) Enable removing empty columns only:

Set Pr eprocessor (prep_RenoveEnpt yCol s) ;

c) Enable removing all fixed variables and linear-dependent rows only:

Set Pr eprocessor (prep_RenoveFi xedVars + prep_Renoveli near Rows) ;

d) Enable all preprocessor’s checks (default settings):

Set Pr eprocessor (prep_RenoveFi xedVars + prep_RenoveEmptyCol s +
prep_RenoveSi ngul ar + prep_RenoveLi near Rows +
prep_Renoveli near Col s + prep_For cedRows) ;

voi d Set Tol erances(double Primal, // Primaltolerance
doubl e Dual, /| Dual tolerance
doubl e Optimal // Optimality tolerance
)

Defines the calculation tolerances and therefore controls the accuracy of the solution. Defaults are: Primal=1e-8,
Dual=1e-8, Optimal=1e-10.

Copyright © 2004-2011 Optimalon Software.

voi d Set Maxl terationCount (int Val ue)

Function defines the maximum number of iterations (default is 100). If this number is reached but the specified
tolerances are not then the calculation stops with cal ¢_Unknown result.

voi d Set Scal i ng(i nt Val ue)

Function disables / enables the constraints matrix scaling for better numerical stability during the calculation.
If Value = 1 then scaling is enabled (default).
If Value = 0 then scaling is disabled.

voi d Set Refi nenent (i nt Val ue)

Function disables / enables the constraints matrix refinement for better numerical stability during the calculation.
If Value = 1 then refinement is enabled.
If Value = 0 then refinement is disabled (default).

voi d Set Gondzi o(i nt Val ue)

Function disables / enables the usage of Gondzio correction during the calculation.
If Value = 1 then Gondzio correction is enabled.
If Value = 0 then Gondzio correction is disabled (default).

Copyright © 2004-2011 Optimalon Software.

